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Abstract — in this paper, we present an approach for the cryptanalysis of four rounded Data Encryption 

Standard (DES). It can be achieved by Encryption algorithms which are used to prevent unauthorized access of 

data. Cryptography is a science of keeping data transfer secure, so that eavesdroppers (or attackers) cannot 

decipher the transmitted message. The results indicate that the proposed approach is efficient in finding missing 

key bits of the data encryption standard Algorithm. 
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I. INTRODUCTION 
Cryptography includes two basic components: Encryption algorithm and Keys. If sender and recipient 

use the same key then it is known as symmetrical or private key cryptography. It is always suitable for long data 

streams. Such system is difficult to use in practice because the sender and receiver must know the key. It also 

requires sending the keys over a secure channel from sender to recipient The question is that if secure channel 

already exist then transmit the data over the same channel. On the other hand, if different keys are used by 

sender and recipient then it is known as asymmetrical or public key cryptography. The key used for encryption 

is called the public key and the key used for decryption is called the private key. Such technique is used for 

short data streams and also requires more time to encrypt the data. To encrypt a message, a public key can be 

used by anyone, but the owner having private key can only decrypt it. There is no need for a secure 

communication channel for the transmission of the encryption key. Asymmetric algorithms are slower than 

symmetric algorithms and asymmetric algorithms cannot be applied to variable-length streams of data. 

 

II. CRYPTOGRAPHY TECHNIQUES 
There are two techniques used for data encryption and decryption, which are:  

2.1 Symmetric Cryptography 

If sender and recipient use the same key then it is known as symmetrical or private key cryptography. It 

is always suitable for long data streams. Such system is difficult to use in practice because the sender and 

receiver must know the key. It also requires sending the keys over a secure channel from sender to recipient. 

There are two methods that are used in symmetric key cryptography: block and stream. 

The block method divides a large data set into blocks (based on predefined size or the key size), 

encrypts each block separately and finally combines blocks to produce encrypted data. 

The stream method encrypts the data as a stream of bits without separating the data into blocks. The 

stream of bits from the data is encrypted sequentially using some of the results from the previous bit until all the 

bits in the data are encrypted as a whole. 

2.2 Asymmetric Cryptography 

If sender and recipient use different keys then it is known as asymmetrical or public key cryptography. 

The key used for encryption is called the public key and the key used for decryption is called the private key. 

Such technique is used for short data streams and also requires more time to encrypt the data. Asymmetric 

encryption techniques are almost 1000 times slower than symmetric techniques, because they require more 

computational processing power.  To get the benefits of both methods, a hybrid technique is usually used. In this 

technique, asymmetric encryption is used to exchange the secret key; symmetric encryption is then used to 

transfer data between sender and receiver. 

  

III. ALGORITHM 
DES works on bits, or binary numbers--the 0s and 1s common to digital computers. Each group of four 

bits makes up a hexadecimal, or base 16, number. Binary "0001" is equal to the hexadecimal number "1", binary 
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"1000" is equal to the hexadecimal number "8", "1001" is equal to the hexadecimal number "9", "1010" is equal 

to the hexadecimal number "A", and "1111" is equal to the hexadecimal number "F".  

DES works by encrypting groups of 64 message bits, which is the same as 16 hexadecimal numbers. 

To do the encryption, DES uses "keys" where apparently 16 hexadecimal numbers long, or apparently 64 bits 

long are also. However, every 8th key bit is ignored in the DES algorithm, so that the effective key size is 56 

bits. But, in any case, 64 bits (16 hexadecimal digits) is the round number upon which DES is organized.  

For example, if we take the plaintext message "8787878787878787", and encrypt it with the DES key 

"0E329232EA6D0D73", we end up with the cipher text "0000000000000000". If the cipher text is decrypted 

with the same secret DES key "0E329232EA6D0D73", the result is the original plaintext "8787878787878787".  

This example is neat and orderly because our plaintext was exactly 64 bits long. The same would be 

true if the plaintext happened to be a multiple of 64 bits. But most messages will not fall into this category. They 

will not be an exact multiple of 64 bits (that is, an exact multiple of 16 hexadecimal numbers).  

For example, take the message "Your lips are smoother than Vaseline". This plaintext message is 38 

bytes (76 hexadecimal digits) long. So this message must be padded with some extra bytes at the tail end for the 

encryption. Once the encrypted message has been decrypted, these extra bytes are thrown away. There are, of 

course, different padding schemes--different ways to add extra bytes. Here we will just add 0s at the end, so that 

the total message is a multiple of 8 bytes (or 16 hexadecimal digits, or 64 bits). 

The plaintext message "Your lips are smoother than vaseline" is, in hexadecimal,  

"596F7572206C6970 732061726520736D 6F6F746865722074 68616E2076617365 6C696E650D0A". 

(Note here that the first 72 hexadecimal digits represent the English message, while "0D" is hexadecimal for 

Carriage Return, and "0A" is hexadecimal for Line Feed, showing that the message file has terminated.) We 

then pad this message with some 0s on the end, to get a total of 80 hexadecimal digits:  

"596F7572206C6970 732061726520736D 6F6F746865722074 68616E2076617365 6C696E650D0A0000". 

If we then encrypt this plaintext message 64 bits (16 hexadecimal digits) at a time, using the same DES key 

"0E329232EA6D0D73" as before, we get the ciphertext:  

"C0999FDDE378D7ED 727DA00BCA5A84EE 47F269A4D6438190 9DD52F78F5358499 

828AC9B453E0E653". 

This is the secret code that can be transmitted or stored. Decrypting the ciphertext restores the original 

message "Your lips are smoother than vaseline". (Think how much better off Bill Clinton would be today, if 

Monica Lewinsky had used encryption on her Pentagon computer!)  
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The general depiction of DES encryption algorithm which consists of initial permutation of the 64 bit 

plain text and then goes through  4 rounds, where each round consists permutation and substitution of the text 

bit and the inputted key bit, and at  last goes through an inverse initial permutation to get the 64 bit cipher text. 

Steps for Algorithm  

Step 1: Create 4 sub-keys, each of which is 48- 

bits long. The 64-bit key is permuted according to the following table, PC-1. Since the first entry in the table is 

"57", this means that the 57th bit of the original key K becomes the first bit of the permuted key K+. The 49th 

bit of the original key becomesthesecond bit of the permuted key. The 4th bit of the original key is the last bit of 

the permuted key. Note only 56 bits of the original key appear in the permuted key. Example: From the original 

64-bit key  

K =11111111111111100000000000000001010101 0101010100101010101010101   

we get the 56-bit permutation  

K+=00110011110000110011001111000011001111000011001100110011   

Next, split this key into left and right halves, C0 and D0, where each half has 28 bits. Example: From the 

permuted key K+, we get  

C0 = 0011001111000011001100111100  

D0 = 0011001111000011001100110011  

Table 1: PC-1 

57   49    41   33    25    17    9 

1   58    50   42    34    26   18 

10    2    59   51    43    35   27 

19   11     3   60    52    44   36 

63   55    47   39    31    23   15 

7   62    54   46    38    30   22 

14    6    61   53    45    37   29 

21   13     5   28    20    12    4 

 

With C0 and D0 defined, we now create sixteen blocks Cn  andDn, 1<=n<=4. Each pair of blocks 

Cnand Dn is formed from the previous pair Cn-1 and Dn-1, respectively, for n = 1, 2, … 4, using the schedule of 

"left shifts" of the  previous block. To do a left shift, move each bit one place to the left, except for the first bit, 

which is cycled to the end of the block. This means, for example, C3 and D3 are obtained from C2 and D2, 

respectively, by two left shifts, and C4 and D4  are  obtained from C3 and D3, respectively, by one left shift. In 

all cases, by a single left shift is meant a rotation of the bits one place to the left, so that after one left shift the 

bits in the 28 positions are the bits that were previously in positions 2, 3,..., 28, 1.  Example: From original pair 

C0 and D0 we obtain:  

C0 = 0011001111000011001100111100 

D0 = 0011001111000011001100110011 

C1 = 1110000110011001010101011111 

D1 = 0110011110000110011001100110 

 

We now form the keys Kn, for 1<=n<=4, by applying the following permutation table to each of the 

concatenated pairs CnDn. Each pair has 56 bits, but PC-2 only uses 48 of these.  

 

Table 2: PC-2 

14    17   11    24     1    5 

3    28   15     6    21   10 

23    19   12     4    26    8 

16     7   27    20    13    2 

41    52   31    37    47   55 

30    40   51    45    33   48 

44    49   39    56    34   53 

46    42   50    36    29   32 

 

Therefore, the first bit of Kn  is the 14th bit of CnDn, the second bit the 17th, and so on, ending with 

the 48th bit ofKn being the 32th bit of CnDn 

Step 2: Encode each 64-bit block of data  

 

There is an initial permutation IP of the 64 bits of the message data M. This rearranges the bits according to the  

following table, where the entries in the table show the new arrangement of the bits from their initial order.  
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Table 3: IP 

58   50   42   34   26   18   10  2 

60   52   44   36   28   20   12  4 

62   54   46   38   30   22   14  6 

64   56   48   40   32   24   168 

57   49   41   33   25   17   9   1 

59   51   43   35   27   19   11  3 

61   53   45   37   29   21   13  5 

63   55   47   39   31   23   15  7 

 

The 58th bit of M becomes the first bit of IP. The 50th bit of M becomes the second bit of IP. The 7th bit of M is 

the  last bit of IP. Example: Applying the  initial permutation to the block of text M, given previously, we get  

M = 0000 00010010 00110100 01010110 01111000 1001101010111100110111101111 

IP=1100110000000000110011001111111111110000 101010101111000010101010   

Here the 58th bit of M is "1", which becomes the first bit of IP. The 50th bit of M is "1", which becomes the 

second bit of IP. The 7th bit of M is "0", which becomes the last bit of IP. Next divide the permuted block IP 

into a left half L0 of 32 bits, and a right half R0 of 32 bits.  

Example: From IP, we get L0 and R0  

L0 = 11001100000000001100110011111111   

R0 = 11110000101010101111000010101010    

We now proceed through 4 iterations, for 1<=n<=4,  using a function f which operates on two blocks--a data 

block of 32 bits and a key Kn of 48 bits--to produce a block of 32 bits. Let + denote XOR addition, (bit-by-bit 

addition modulo 2). Then for n going from 1 to 4 we calculate Ln = Rn-1 Rn = Ln-1 + f(Rn-1,Kn)n This results 

in a final block, for n = 4, of L4R4. That is, in each iteration, we take the right 32 bits of the previous result and 

make them the left 32 bits of the current step. For the right 32 bits in the current step, we XOR the left 32 bits of 

the previous step with the calculation f . Example: For n = 1, we have  

K1=000110110000001011101111111111000111000001110010   

L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010  

R1  = L0  + f(R0,K1) It remains to explain how the function f works. To calculate f, we first expand each block 

Rn-1 from 32 bits to 48 bits. This is done by using a selection table that repeats some of the  

bits in Rn-1 We'll call the use of this selection table the function E. Thus E(Rn-1) has a 32 bit input block, and a 

48 bit output block. Thus the first three bits of E(Rn-1) are the bits in positions 32, 1 and 2 of Rn-1 while the last 

2 bits of E(Rn-1) are the bits in positions 32 and 1.Example: We calculate  

E(R0) from R0 as follows:  

R0 = 1111 0000101010101111000010101010  

E(R0)=011110100001010101010101011110100001  

010101010101  

(Note that each block of 4 original bits has been expanded to a block of 6 output bits.) Next in the f calculation, 

we XOR the output E(Rn-1) with the key Kn: Kn + E(Rn-1). Example: For K1 , E(R0), we have  

K1=00011011000000101110111111111100011 1000001110010  

(R0)=011110100001010101010101011110100001 010101 010101  

K1+E(R0)=100101010001100001010101011101101000010111000111   

To this point we have expanded Rn-1 from 32 bits to 48 bits, using the selection table, and XORed the result 

withn the key Kn . We now have 48 bits, or eight groups of six  bits. We now do something strange with each 

group of six bits: we use them as addresses in tables called "S boxes". Each group of six bits will give us an 

address in a different S box. Located at that address will be a 4 bit number. This 4 bit number will replace the 

original 6 bits. The net result is that the eight groups of 6 bits are transformed into eight groups of 4 bits (the 4-

bit outputs  from the S boxes) for 32 bits total. Write the previous result, which is 48 bits, in the form:  

Kn + E(Rn-1) =B1B2B3B4B5B6B7B8,  

where each Bi is a group of six bits. We now calculateS1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6 (B6)S7(B7)S8(B8) 

where  Si(Bi) refers to the output  of the i-th S box.  To repeat, each of the  

functions S1, S2,..., S8, takes a 6-bit block as input and yields a 4-bit block  as output. The table  to determine 

S1  is shown and explained below:  If S1 is the function defined in this table and B is a block of 6 bits, then 

S1(B) is determined as follows: The first and last bits of B represent in base 2 a number in the decimal range 0 

to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B represent in base 2 a number in the  

decimal range 0 to 15 (binary 0000 to 1111). Let that number be j. Look up in the table the number in the i-th 

row and j-th column. It is a number  in the range 0 to 15 and is uniquely represented by a 4 bit block. That block 

is the output S1(B) of S1 for the input B. For example, for input block B = 011101 the first bit is "0" and the last 

bit "1" giving 01 as the row. This is row 1. The middle four bits are "1110". This is the binary equivalent of 
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decimal 13,  so the column is column number 13. In row 1, column 13 appears 5. This determines the output; 5 

is binary 0011, so that the output is 0101. Hence S1(011101) = 0011. Example: For the first round,  we obtain as 

the output  of the  eight S boxes: K1+E(R0)=100101010001100001010101011101101000010111000111 

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)=010111001000 00101011 010110010111  

The final stage in the calculation of f is to do a permutation P of the S-box output to obtain the final  value of f:  

f = P(S1(B1)S2(B2)...S8(B8)) P yields a 32-bit output from a 32-bit input by permuting  the bits of the  input 

block. Example: From the  output of the eight Sboxes:  

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7) 

S8(B8) = 010111001000 00101011 01011001 0111  

we get f = 0010 0011010010101010100110111011   

R1=L0+f(R0,K1)= 1100110000000000110011001  

111 1111+ 00100011010010101010100110111011  

= 11101111010010100110010101000100  

 

In the next round, we will have L2 = R1, which is  

the block we just calculated, and then we must calculate R2 =L1 + f(R1, K2), and so on for 4 rounds. At the end 

of the sixteenth round we have the blocks L4 and R4. We then reverse the order of the two blocks into the 64-bit 

block R16L16 and apply a final permutation IP-1 as defined by thefollowing table:  

                                         

Table 4: IP^ (-1) 

40   8   48   16   56   24   64  32 

39   7   47   15   55   23   63  31 

38   6   46   14   54   22   62  30 

37   5   45   13   53   21   61  29 

36   4   44 12   52   20   60  28 

35   3   43   11   51   19   59  27 

34   2   42   10   50   18   58  26 

33   1   41    9   49   17   57  25 

 

That is, the output of the algorithm has bit 40 of the pre output block asf 

 
Fig.2 DES Fiestel Digram 

 

its first bit, bit 8 as its second bit, and so on, until bit 25 of the pre-output block is the last bit of the 

output.  
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Example: If we process all 4  blocks using the method defined previously, we get, on the 4th round,  
L4 = 10100010010111000000101111110100  

R4= 01110111001000100000000001000101  

We reverse the order of these two blocks and apply the final permutation to  

R4L4= 011101110010001000000000010001011 0100010010111000000101111110100  

IP-1= 010010011101100001100011001010000 1100010110100100110001110000010 this in hexadecimal format is 

49D8632862D26382. This is the encrypted form of  

M = 0123456789ABCDEF: namely,   

C = 49D8632862D26382.  

Decryption is simply the inverse of encryption, following the same steps as above, but reversing the order in 

which the sub-keys are applied.  

 

IV. CONCLUSION AND FUTURE WORKS 
  In this paper, for the cryptanalysis of Data Encryption Standard is presented.  It shows that it is an effective 

approach for cryptanalysis of four-rounded DES. The cost function used in this paper is generic and can be  used  for  

the  cryptanalysis  of  other  block  ciphers  In  the future, we will use this approach on sixteen-rounded DES as well 

as on other block ciphers such as Advanced Encryption Standard algorithm (AES). We will also try to improve the 

fitness function. 
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